
44 ITNOW September 2019

In an era where privacy regulatory
compliance is key, organisations are
mitigating their risk by pushing software
builders to consider privacy early in
software design. Indeed, the design phase
o� ers the greatest value for incorporating
privacy in software, since issues
discovered later in the software lifecycle
become more di� cult and expensive
to fi x. Also, products that are developed
following this approach can leverage the

‘privacy-by-design’ badge as a selling
advantage. But, these benefi ts can quickly
be overshadowed by the burden it brings
to the software designer / developer.

Designers are not generally privacy
experts
Software designers are not normally
employed as privacy experts, yet they
carry the ultimate responsibility of privacy-
preserving design. Core in the designer’s
mindset is how to translate functional
requirements into engineering actions in
a design. If privacy is considered at all,
it is usually later when the core design
decisions are already made. Very few
developers can comfortably say that at
the design stage, they successfully used
the foundational principles of privacy-by-

worse by organisational pressure for
shorter time to market cycles. Of course,
this is important in today’s world where the
only way to beat your fellow competitor is
by being the fi rst to get the product to the
consumer. But this also has a consequence
on how the designer may approach
their work.

The easiest approach to deal with the
confl ict between privacy and functional
requirements, in the shortest possible time,
is to design the software in a zero-sum
manner. In such an approach, the resulting
design solution often forces end-users to
make uncomfortable trade-o� s to forfeit
privacy in order to gain functionality, or vice
versa. This outcome tends to counteract
the benefi t of being the fi rst to ship
the product.

At the very least, the inappropriate usage
of privacy becomes a barrier to technology
adoption; there is a loss of trust as the
brand becomes compromised; and the
organisation becomes more vulnerable to
regulatory fi nes and sanctions. Indeed, the
alternative to this conundrum is to design
the software in a win-win positive-sum
manner, where end-users are not required
to consider trade-o� s.

A structured, privacy-centric design
approach often takes time, requiring
detailed consideration of the nature of
inconsistencies, as well as having to
navigate the di� cult path of comparing
design alternatives. This option is at
odds with the realities of deadline-driven

design, OECD Privacy Principles or Fair
Information Practice Principles (FIPPs) as
a reference framework.

Why is using a framework important?
Well, these principles form the basis for
existing and emerging privacy and data
protection laws (e.g. GDPR and the Data
Protection Act). They also serve as the
foundation for the creation of leading
practice privacy programs. As such, it

will be di� cult to suggest that a design is
privacy compliant when the designer does
not consider the foundational principles
upon which the privacy regulations
are built.

As part of the agenda for realising
privacy preserving software, there is the
need for tools and techniques that better
enable software designers to incorporate
privacy at the earliest stages. At the same
time, it is important to reduce the burden
on those team members to know, hold and
work with privacy regulations / principles
in depth.

Inconsistencies between privacy and
functional requirements
The confl ict and tension between privacy
and functional requirements is often made

Dr Inah Omoronyia, Lecturer in Software Engineering and Information Security at the University of
Glasgow, takes a dystopic view of the fi ve burdens placed on software designers in the hope of
provoking amenable and sustainable solutions.

do
i:1

0.
10

93
/i

tn
ow

/b
w

z0
77

 ©
20

19
 T

he
 B

ri
tis

h
Co

m
pu

te
r

S
oc

ie
ty

Im
ag

e:
 iS

to
ck

.c
om

/Iu
liia

 M
et

ka
lo

va

WHY IS BAKING
PRIVACY INTO

‘At the same time, it is important to reduce the
burden on those team members to know, hold and
work with privacy regulations / principles in depth.’

SOFTWARE DESIGN HARD?

D
ow

nloaded from
 https://academ

ic.oup.com
/itnow

/article-abstract/61/3/44/5552605 by U
niversity of G

lasgow
 user on 28 August 2019

September 2019 ITNOW 45

PRIVACY BY DESIGN

deployment cycles. See Bashar Nuseibeh’s
review of living with inconsistencies in
software development1 for a deeper
perspective of this problem.

Ideological nature of privacy regulations
and principles
Although it is easy to see privacy
regulations as they apply to software
engineering, they are not necessarily
created with software engineering in
mind. This is because the manner in which
existing regulations and laws are written
seldom helps the software designer. Often,
regulations are written abstractly to cover
a wider audience, making it di� cult to
measure disclosure risk in a more intuitive
way. In other cases, they are formulated as
slogans that o� er useful explanations of
the meaning of privacy, but don’t have the
in-depth systematic and analytic lines of
action to achieve such privacy.

In short, the designer needs to ask
substantive privacy questions to result in
concrete engineering actions that comply
with the regulatory requirement of the
design. If regulations, principles and
laws provide no guidelines on how such
questions may be asked, designers may
fi nd themselves unable to translate privacy
requirements of end-users into concrete
and verifi able evidence in technology.

Changing requirements and evolutionary
design
In his publication Is Design Dead? Martin
Fowler argues that changing requirements
are the number one big issue that causes
headaches in software projects. You may
attest to this claim if you are the business

analyst who frequently has to interact with
the customer. The software designer has
to understand these requirements well
enough to separate volatile from stable
aspects of the design, to ensure that the
design is able to evolve and be maintained.
Now, imagine adding to this already hard
problem, frequently changing privacy
needs of end-users, or end-users that only
know that they have a privacy need when
they hear of bad press in mainstream
media…

Well, the real question here is this: how
can a designer plan to deal with volatile
(privacy) requirements when they have no
clear insights on what kind of changes
to expect?

Design time vs runtime distinction
Traditionally, all software engineering
processes are organised into design time
and runtime activities. These categories
are highly sequential and dictate that
design time activities are completed before
runtime, with little or no transfer of top
line ideas between the two worlds. For this
reason, some design bugs are normally not
discovered until the software is tested in
a production environment with real data,
despite sophisticated design-time checking
and pre-release testing.

This distinction can throw the design
of privacy-preserving software into a
dilemma: at one end, using real data at
runtime has stronger implications for
privacy and privacy harm, as it is often
costly and di� cult to recover from.
At the other end of the scale, privacy
requirements of end-users often emerge
at runtime. Since these regulations are

not watertight, the design will always be
open to privacy vulnerabilities introduced
during the design process, only to manifest
themselves at runtime, when the software
is already deployed to end-users.

Conclusion
As previously mentioned, this dystopic view
of realising privacy-preserving software is
intentional, aimed at provoking thoughtful
discussions and solutions. It’s not to say
there are no success stories of good
design. For example, see Ann Cavoukian’s
case study of successfully applying
privacy-by-design in a facial recognition
system (https://bit.ly/2FmpBP7). But
there is a need for more case studies,
particularly in a world where new
technologies are being introduced into the
market at a much faster pace relative to
the privacy techniques necessary to ensure
privacy in them.

1 Bashar Nuseibeh. 1996. To be and not to
be: On managing inconsistency in software
development. In IWSSD ‘96.

D
ow

nloaded from
 https://academ

ic.oup.com
/itnow

/article-abstract/61/3/44/5552605 by U
niversity of G

lasgow
 user on 28 August 2019

